Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            All multiple population (MP) formation models in globular clusters (GCs) predict that second population (SP) stars form more centrally concentrated than the first population (FP). As dynamical evolution proceeds, spatial differences are progressively erased and only dynamically young clusters are expected to retain a partial memory of the initial structural differences. In recent years, this picture has been supported by observations of the MP radial distributions of both Galactic and extragalactic GCs. However, more recent observations have suggested that in some systems, FPs might actually form more centrally segregated, with NGC 3201 being one significant example of such a possibility. Here, we present a detailed morphological and kinematic characterization of the MPs in NGC 3201, based on a combination of photometric and astrometric data. We show that the distribution of the SP is clearly bimodal. Specifically, the SP is significantly more centrally concentrated than the FP within ∼1.3 cluster’s half-mass radius. Beyond this point, the SP fraction increases again, likely due to asymmetries in the spatial distributions of the two populations. The central concentration of the SP observed in the central regions implies that it formed more centrally concentrated than the FP, even more so than what is observed in the present-day. This interpretation is supported by the key information provided by the MP kinematic properties. Indeed, we find that the FP is isotropic across all the sampled cluster extension, while the velocity distribution of the SP becomes radially anisotropic in the cluster’s outer regions, as expected for the dynamical evolution of SP stars formed more centrally concentrated than the FP. The combination of spatial and kinematic observations provide key insights into the dynamical properties of this cluster and lend further support to scenarios in which the SP forms more centrally concentrated than the FP.more » « less
- 
            ABSTRACT We present an analysis of the degree of energy equipartition in a sample of 101 Monte Carlo numerical simulations of globular clusters (GCs) hosting either a system of stellar-mass black holes (BHS), an intermediate-mass black hole (IMBH) or neither of them. For the first time, we systematically explore the signatures that the presence of BHS or IMBHs produces on the degree of energy equipartition and if these signatures could be found in current observations. We show that a BHS can halt the evolution towards energy equipartition in the cluster centre. We also show that this effect grows stronger with the number of stellar-mass black holes in the GC. The signatures introduced by IMBHs depend on how dominant their masses are to the GCs and for how long the IMBH has co-evolved with its host GCs. IMBHs with a mass fraction below 2 per cent of the cluster mass produce a similar dynamical effect to BHS, halting the energy equipartition evolution. IMBHs with a mass fraction larger than 2 per cent can produce an inversion of the observed mass-dependence of the velocity dispersion, where the velocity dispersion grows with mass. We compare our results with observations of Galactic GCs and show that the observed range of the degree of energy equipartition in real clusters is consistent with that found in our analysis. In particular, we show that some Galactic GCs fall within the anomalous behaviour expected for systems hosting a BHS or an IMBH and are promising candidates for further dynamical analysis.more » « less
- 
            The structural properties of multiple populations in the dynamically young globular cluster NGC 2419NGC 2419 is likely the globular cluster (GC) with the lowest dynamical age in the Galaxy. This makes it an extremely interesting target for studying the properties of its multiple populations (MPs), as they are likely to have been affected only modestly by long-term dynamical evolution effects. Here we present for the first time a detailed analysis of the structural and morphological properties of the MPs along the whole extension of this remote and massive GC by combining high-resolution HST and wide-field ground-based data. In agreement with formation models predicting that second population (SP) stars form in the inner regions of the first population (FP) system, we find that the SP is more centrally concentrated than the FP. This may provide constraints on the relative concentrations of MPs in GCs in the early stages of the evolutionary phase driven by two-body relaxation. In addition, we find that the fraction of FP stars is larger than expected from the general trend drawn by Galactic GCs. If NGC 2419 formed in the Sagittarius dwarf galaxy and was later accreted by the Milky Way, as suggested by a number of studies, we show that the observed FP fraction may be due to the transition of NGC 2419 to a weaker tidal field (its current Galactocentric distance isdgc ∼ 95 kpc) and consequently to a reduced rate of FP star loss.more » « less
- 
            Abstract We present results from wide-field imaging of the resolved stellar populations of the dwarf spheroidal galaxies Cassiopeia III (And XXXII) and Perseus I (And XXXIII), two satellites in the outer stellar halo of the Andromeda galaxy (M31). Our WIYN pODI photometry traces the red giant star population in each galaxy to ∼2.5−3 half-light radii from the galaxy center. We use the tip of the red giant branch (TRGB) method to derive distances of (m−M)0= 24.62 ± 0.12 mag (839 kpc, or kpc from M31) for Cas III and 24.47 ± 0.13 mag (738 kpc, or 351 kpc from M31) for Per I. These values are consistent within the errors with TRGB distances derived from a deeper Hubble Space Telescope study of the galaxies’ inner regions. For each galaxy, we derive structural parameters, total magnitude, and central surface brightness. We also place upper limits on the ratio of neutral hydrogen gas mass to optical luminosity, confirming the gas-poor nature of both galaxies. We combine our data set with corresponding data for the M31 satellite galaxy Lacerta I (And XXXI) from earlier work and search for substructure within the RGB star populations of Cas III, Per I, and Lac I. We find an overdense region on the west side of Lac I at a significance level of 2.5σ–3σand a low-significance filament extending in the direction of M31. In Cas III, we identify two modestly significant overdensities near the center of the galaxy and another at two half-light radii. Per I shows no evidence for substructure in its RGB star population, which may reflect this galaxy’s isolated nature.more » « less
- 
            Abstract Recent work on metal-intermediate globular clusters (GCs) with [Fe/H] = −1.5 and −0.75 has illustrated the theoretical behavior of multiple populations in photometric diagrams obtained with the JWST. These results are confirmed by observations of multiple populations among the M dwarfs of 47 Tucanae. Here we explore multiple populations in metal-poor GCs with [Fe/H] = −2.3. We take advantage of synthetic spectra and isochrones that account for the chemical composition of multiple populations to identify photometric diagrams that separate the distinct stellar populations of GCs. We derive high-precision photometry and proper motion for main-sequence (MS) stars in the metal-poor GC M92 from JWST and Hubble Space Telescope images. We identify a first-generation (1G) and two main groups of second-generation (2G A and 2G B ) stars and investigate their kinematics and chemical composition. We find isotropic motions with no differences among the distinct populations. The comparison between the observed colors of the M92 stars and the colors derived by synthetic spectra reveals that the helium abundances of 2G A and 2G B stars are higher than those of the 1G by Δ Y ∼ 0.01 and 0.04, respectively. The m F090W versus m F090W − m F277W color–magnitude diagram shows that below the knee MS stars exhibit a wide color broadening due to multiple populations. We constrain the amount of oxygen variation needed to reproduce the observed MS width, which is consistent with results on red giant branch stars. We conclude that multiple populations with masses of ∼0.1–0.8 M ⊙ share similar chemical compositions.more » « less
- 
            Abstract Our understanding of the kinematic properties of multiple stellar populations (mPOPs) in Galactic globular clusters (GCs) is still limited compared to what we know about their chemical and photometric characteristics. Such limitation arises from the lack of a comprehensive observational investigation of this topic. Here we present the first homogeneous kinematic analysis of mPOPs in 56 GCs based on high-precision proper motions computed with Hubble Space Telescope data. We focused on red-giant-branch stars, for which the mPOP tagging is clearer, and measured the velocity dispersion of stars belonging to first (1G) and second generations (2G). We find that 1G stars are generally kinematically isotropic even at the half-light radius, whereas 2G stars are isotropic at the center and become radially anisotropic before the half-light radius. The radial anisotropy is induced by a lower tangential velocity dispersion of 2G stars with respect to the 1G population, while the radial component of the motion is comparable. We also show possible evidence that the kinematic properties of mPOPs are affected by the Galactic tidal field, corroborating previous observational and theoretical results suggesting a relation between the strength of the external tidal field and some properties of mPOPs. Although limited to the GCs’ central regions, our analysis leads to new insights into the mPOP phenomenon, and provides the motivation for future observational studies of the internal kinematics of mPOPs.more » « less
- 
            Abstract We present Hubble Space Telescope (HST) photometric results for NGC 6402, a highly reddened, very luminous Galactic globular cluster (GC). Recent spectroscopic observations of its red giant stars have shown a quite peculiar behavior in the chemistry of its multiple populations. These results have prompted UV and optical HST observations aimed at obtaining the cluster’s “chromosome map” (ChM), an efficient tool for classifying GCs and characterizing their multiple populations. We find that the discontinuity in the abundance distributions of O, Mg, Al, and Na inferred from spectroscopy is more nuanced in the ChM, which is mostly sensitive to nitrogen. Nevertheless, photometry in optical bands reveals a double main sequence, indicating a discontinuity in the helium content of the populations. The population with the largest chemical anomalies (extreme) peaks at a helium mass fraction Y ∼ 0.31. This helium content is consistent with results from the analysis of the distribution of horizontal branch stars and the spectrophotometry of the red giants. The ChM and the color–magnitude diagrams are compared with those of NGC 2808, a prototype GC with helium abundances up to Y ≳ 0.35, and both confirm that NGC 6402 does not host stellar populations with such extreme helium content. Further, the ChM reveals the presence of a group of stars with higher metallicity, thus indicating that NGC 6402 is a Type II cluster. The modalities of formation of the multiple populations in NGC 6402 are briefly surveyed, with main attention on the asymptotic giant branch and supermassive star models, and on possible cluster merging.more » « less
- 
            null (Ed.)ABSTRACT We have carried out a set of Monte Carlo simulations to study a number of fundamental aspects of the dynamical evolution of multiple stellar populations in globular clusters with different initial masses, fractions of second generation (2G) stars, and structural properties. Our simulations explore and elucidate: (1) the role of early and long-term dynamical processes and stellar escape in the evolution of the fraction of 2G stars and the link between the evolution of the fraction of 2G stars and various dynamical parameters; (2) the link between the fraction of 2G stars inside the cluster and in the population of escaping stars during a cluster’s dynamical evolution; (3) the dynamics of the spatial mixing of the first-generation (1G) and 2G stars and the details of the structural properties of the two populations as they evolve toward mixing; (4) the implications of the initial differences between the spatial distribution of 1G and 2G stars for the evolution of the anisotropy in the velocity distribution and the expected radial profile of the 1G and 2G anisotropy for clusters at different stages of their dynamical history; and (5) the variation of the degree of energy equipartition of the 1G and the 2G populations as a function of the distance from the cluster’s centre and the cluster’s evolutionary phase.more » « less
- 
            null (Ed.)ABSTRACT We present a detailed 3D kinematic analysis of the central regions (R < 30 arcsec) of the low mass and dynamically evolved galactic globular cluster (GC) NGC 6362. The study is based on data obtained with ESO-VLT/MUSE used in combination with the adaptive optics module and providing ∼3000 line-of-sight radial velocities, which have been complemented with Hubble Space Telescope proper motions. The quality of the data and the number of available radial velocities allowed us to detect for the first time a significant rotation signal along the line of sight in the cluster core with amplitude of ∼1 km s−1 and with a peak located at only ∼20 arcsec from the cluster centre, corresponding to only $${\sim}10{{\ \rm per\ cent}}$$ of the cluster half-light radius. This result is further supported by the detection of a central and significant tangential anisotropy in the cluster innermost regions. This is one of the most central rotation signals ever observed in a GC to date. We also explore the rotational properties of the multiple populations hosted by this cluster and find that Na-rich stars rotate about two times more rapidly than the Na-poor sub-population thus suggesting that the interpretation of the present-day GC properties require a multicomponent chemo-dynamical approach. Both the rotation amplitude and peak position would fit qualitatively the theoretical expectations for a system that lost a significant fraction of its original mass because of the long-term dynamical evolution and interaction with the Galaxy. However, to match the observations more quantitatively further theoretical studies to explore the initial dynamical properties of the cluster are needed.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
